
Integrating Windows APIs
and DLLs Using WinWord

Presented by: Woody Leonhard

Woody is president of Pinecliffe International, purveyors
of the critically acclaimed WOPR — Woody’s Office
POWER PackÔ — the #1 enhancement to Word for
Windows. He’s also a Microsoft Consulting Partner.

Woody wrote Windows 3.1 Programming for Mere
Mortals, the seminal guide to Windows programming in
Visual Basic, WordBasic, and other “macro” languages.
Mere Mortals shows you how to beat Windows into
submission without expensive, complex tools: if you can
write a macro, you can program Windows.

Woody and Vincent Chen teamed up for the ultimate, no-
bull reference to things WinWord, the Hacker’s Guide to
Word for Windows. If you prefer your reference books
without the sugar coating, check the Hacker’s Guide.

Pinecliffe International
Coal Creek Canyon, Golden, Colorado USA 80403-0100

WOPR order line: 800-OK-WINWORD (800-659-4696)
Outside USA: 314-965-5630

Microsoft Tech·Ed '93 Windows API/DLLs with WinWord · 1

Windows 3.1 Programming for Mere Mortals, Addison-
Wesley, 1992, ISBN 0-201-60832-4. “Irreverent ... a
painless introduction to such arcane issues as API calls
and DDE.” — PC Magazine, 10/27/92.

Hacker’s Guide to Word for Windows, Addison-Wesley,
1993, ISBN 0-201-63273-X. “It’s a wonder anybody at
Microsoft still talks to me.” — Woody Leonhard, 1/15/93.

Why?
That’s the obvious question, eh? Why would anybody in their right mind want
to monkey around with the innards of Windows, from inside a word
processor?

The answers to that question are as varied as Word for Windows users
themselves.

Do you want to check and see if another program is running? Ever need a
stopwatch? How about some place to stick WordBasic variable values that
won’t disappear? Want to force WinWord to “let go,” so other Windows
programs can get a little work done? If so, the solution lies in Windows API
and DLL calls.

And the good news is that most of Windows is available to you, from simple
Word for Windows macros.

Little ol’, much-maligned WordBasic has almost all of Windows at its beck
and call.

Dynamic Link Libraries
Windows, as you may know, is nothing but a collection of intertwined
subroutines, not unlike the TSR Terminate-and-Stay-Resident routines of a
kinder and gentler age, rigged to bounce around and occasionally cooperate
with one another.

Those subroutines just sit around in the WinPrimordialOoze, waiting to be
called and used by Windows programs. They have names like USER and
KERNEL and GDI.

They’re brought into the Windows picture as they’re required — dynamically
— and returned to their dank cells when no longer needed. Thus, they’re
“dynamically linked”.

At heart a “Dynamic Link Library” is just a subroutine, or bunch of
subroutines. Windows is composed of DLLs. So are most Winapps.

You can even make your own DLLs, should you be of sufficiently
masochistic bent, but (alas!) not with WordBasic or Visual Basic.

Your WordBasic programs — and, by implication, your WinWord
documents, custom WinWord systems and applications — can take advantage
of the Windows Dynamic Link Libraries. They can also hook into home-
grown DLLs. It’s an incredibly powerful capability, one that we’re (at least
I’m!) only beginning to understand.

4 · Windows API/DLLs with WinWord Microsoft Tech·Ed '93

API
If you want to call a DLL, you have to know the name of the subroutine, what
to feed it, what it will return, right? Pretty hard to call it otherwise.

That whole shtick — names of routines, what they consume, what they
regurgitate — is the “Application Programming Interface”, or API. Back in
the dark ages, some two or three years ago, computer jocks used to refer to
this kinda stuff as “subroutine calling conventions”, but “API” sounds cooler,
like you know what you’re talking about, eh?

Don’t get intimidated by the TLAs. A DLL is just a bunch of subroutines. An
API is just the subroutines’ calling conventions. It’s really that simple.

I’m often amazed at how the books treat Windows API calls, as if they’re
really difficult, or shrouded in mystery. That’s a crock. In fact, if you find the
right subroutine, and can decipher the computerese gobbledygook, using API
calls can be much, much simpler than programming from scratch.

The key to it all is the WordBasic Declare statement.

Stop! Watch!
Here’s an easy, fun example. I hit this while working on the Hacker’s Guide.
Say you want to find out how long it takes for a WordBasic loop to run, to see
if you can speed things up by tweaking stuff. (Or you may want to keep track
of how much time it takes the user to answer a question, or pull in a file from
a network server. Whatever.)

The Wrong Way
My first temptation was to use the WordBasic Time$() function, with a timer
that looks something like this:

Sub MAIN
StartTime$ = Time$()
For i = 1 to 1000
Dummy = Dummy + 1
Next i
EndTime$ = Time$()
MsgBox "Start:" + StartTime$ + " End:" + EndTime$
End Sub

If you try to run that little bit of WordBasic (and if you have the same settings
I have), you’ll get the following message box. Real informative, huh?

Okay, hey, I lied. I never really thought about using Time$(). It’s a terribly
inflexible function, bound at the wrists and ankles to the user’s Windows
Control Panel “International” settings, programmatically inscrutable. But

Microsoft Tech·Ed '93 Windows API/DLLs with WinWord · 5

what the hay — it makes a better story.

A Windows Way
It just so happens that Windows maintains its own clock, ripe for your
picking. And it ticks off milliseconds, accurate to within 55 milliseconds. It
doesn’t stick a colon in the middle of the number, or plant an “AM” at the
end. It simply ticks, telling you how many milliseconds Windows has been
running. All you need to do is get at it.

Ah, no sweat. If you look in Mere Mortals — or any of the “C” or Visual
Basic Windows reference books — you’ll find the Windows DLL (“USER”)
containing the timer function; you’ll find the name of the function
(“GetCurrentTime”); and you’ll find what parameters it takes (none), and how
it returns the time (as something called a Long Integer).

A nip here and a tuck there, and the program is done.

Declare Function GetCurrentTime Lib "User" As Long

Sub MAIN
StartTime = GetCurrentTime
For i = 1 to 1000
Dummy = Dummy + 1
Next i
EndTime = GetCurrentTime
MsgBox "Elapsed Milliseconds:" + Str$(EndTime - StartTime)
End Sub

Finally, something you can work with:

It’s that simple.

Say, Wuh?
Did that go by too fast? Okay. Here’s the slow-mo version.

Dissection
The trick to any DLL call — any intrepid subroutine (or function) call from
WordBasic that dares to reach into the WinPrimordialOoze — is with the
WordBasic Declare statement. That statement has five responsibilities.

First, it must tell WinWord whether you’re looking at a subroutine or a

6 · Windows API/DLLs with WinWord Microsoft Tech·Ed '93

Appearances to the
contrary, this is not a
portrait of the
legendary WordBasic
hack Scott Krueger.

function. That’s easy: a function returns a value, a subroutine doesn’t. This
guy returns a value (else, how would you know the time?), so the Declare
statement starts out like this:

Declare Function

Next, the Declare statement must tell WinWord the name of the subroutine or
function. We cheated and looked it up on page 466 of Mere Mortals, but you
could just as easily have garnered the function’s name from any of dozens of
reference books for the Windows API.

Declare Function GetCurrentTime

If the function GetCurrentTime required any parameters, they would go
immediately after the function’s name. (You’ll see an example shortly.) But
GetCurrentTime doesn’t need any parameters, so we can ignore that part.

Next, we have to tell WinWord where to find GetCurrentTime, the name of
GetCurrentTime’s DLL. Again, we sneaked a peek at Mortals, and found out
that it lives in a Windows library called USER. You can usually find the
DLL’s name in whichever reference book provided you with the function’s
name. (Surprisingly, though, the Windows SDK documentation — the
expensive, “official” documentation — for some reason assumes you already
know where GetCurrentTime lives. Bizarre!)

Declare Function GetCurrentTime Lib "User"

Finally, the function returns a variable, so we need to tell WinWord what kind
of variable to expect. Windows has all sorts of variable types, from simple
integers to structured data types with pointers, and a whole bunch of things in
between (there’s a list on page 125 of Mere Mortals).

Unfortunately, when WordBasic interacts with Windows it’s only capable of
understanding four data types: character string; integer; long (32 bit) integer;
and real (32 bit) numbers. That restriction to four data types causes no end of
havoc; in fact, this amounts to the single most frustrating, damning limitation
in WordBasic API calls.

Putting it all together:

Declare Function GetCurrentTime Lib "User" As Long

There are some significant subtleties in the way WordBasic handles the
Windows variable types, and conversion to and from WordBasic variables.
Even the character string variable type, which would seem at first blush to be
pretty straightforward, can get a bit confusing.

Redux
So there you have it. Windows on the half-shell.

WordBasic has a couple of rather severe limitations when it comes to banging
against DLLs in general, and the Windows API in particular. We touched on

Microsoft Tech·Ed '93 Windows API/DLLs with WinWord · 7

the variable type discrepancy above. In addition, there’s no way I’ve found to
implement a general Windows “call back” capability in WordBasic.

(Don’t let the bafflegab flummox you. There’s nothing mysterious about “call
back”s. In many programming languages you can tell Windows — or any
DLL — “Yo! Run this subroutine. When you’re done, tap me on the shoulder
and tell me you’re through.” Windows taps your program on the shoulder by
running whichever routine you specify. That’s the “call back” routine.)

Several of the WordBestAndBrightest — Scott Krueger, Vince Chen and Guy
Gallo among them — have tried to get at Windows calls that return structured
data, typically with pointers. (The Windows COMMDLG Common Dialog
DLL falls into this category.) So far I don’t know of any general success. But
don’t hold your breath. By the time you read this, somebody may have found
The Way.

There’s only one rule, really, when dealing with Windows API calls: back up
well and back up often. (That’s two rules, huh?) One little slip of the finger,
one slight misinterpretation of the C-centric Windows documentation, one
teensy collision with an undocumented feature, can send your WordBasic
program... WinWord... even Windows itself off into never-never land. You
should back up every single time you run a Declare statement.

Don’t be timid, though. Bang away. You aren’t going to break anything. If
you can’t get a specific DLL call to work the way you think it should, try a
few variations. Experiment!

Gladly then The Way receives
Those who choose to walk in it;

Gladly too its power upholds
Those who choose to use it well.

— Lao Tzu, Tao Tê Ching, 6th century BC

Private INI Files
Let’s dive into the Windows API with both feet, and play around with some
of the most important, most useful Windows API calls: the ones that let you
build your own .INI files.

.INI files store parameters; you can think of ’em as “initialization values” or
“default values” if you like. In fact, an .INI file can hold almost anything. The
beauty of .INI files is that Windows will maintain them for you — do all the
work.

8 · Windows API/DLLs with WinWord Microsoft Tech·Ed '93

Rationale
WordBasic comes with two commands that let you muck around with
WIN.INI, the mother of all Windows .INI files. They’re the two commands
called GetProfileString$ and SetProfileString.

Those commands work just fine. In fact, they work so well that you can
completely lock up Windows — lock ’er up so tight that it can’t even be fixed
by re-booting — with just one bollixed WordBasic command. True fact.

I’m vehemently opposed to using WIN.INI in all but the most dire
circumstances. (Yes, it’s true: sometimes you can’t avoid it.) Take a look at
your WIN.INI some day and you’ll see why: every Tom, Dick and Hairless
application shovels its garbage into WIN.INI, and once something goes into
WIN.INI, it almost never comes out.

I’m fond of saying that your users should tar and feather you, should you use
their WIN.INI — and I’ll provide the feathers.

Just because WordBasic gives you an AK-47, doesn’t mean you have to test it
in rush hour traffic.

If you need to store parameters, you should learn how to create and use your
own .INI file: a private .INI file. It’s quite simple, really.

The INI Thingie
If you look inside almost any .INI file (that is to say, any .INI file except
WINWORD.INI, which is a bizarre mess), you’ll find entries, grouped into
sections, that look like this:

[Enh386]
WinTimeSlice=100,50
display=orchidf.386

In general, .INI files are composed of one or more sections, each section
containing one or more variable/value pairs, thusly:

[Section Name]
VariableName=Value

(The official terminology for all this stuff is ludicrous. If you find yourself

Microsoft Tech·Ed '93 Windows API/DLLs with WinWord · 9

On the other hand,
this is a portrait of
Lee Hudspeth. Lee’s
sidekick Jim Lee (the
other half of PRIME
Consulting) pioneered
the use of private INI
files from within
WordBasic.

wading through the official Windows documentation, trying to sort it all out,
you’ll hit at least three different naming conventions. Judicious use of hip
waders is highly recommended.)

There are two things you normally want to do to an INI file: first, you will
want to set up variables, assigning values to them; second, you’ll want to
retrieve previously assigned values. Rocket science, eh? It’s amazingly easy to
do both, if you use the API calls built into Windows.

WritePrivateProfileString
Let’s say you want to set up your own INI file, called, oh, TECHED.INI.
Within TECHED.INI, you want to establish a section called [WinWord], and
in that section you want to assign MyDummyVariable=Yes, Suh!.

Nuthin’ to it.

Declare Function WritePrivateProfileString Lib "Kernel" \
(Section$, VariableName$, VariableValue$, INIFileName$)\
As Integer

Sub MAIN
n = WritePrivateProfileString("WinWord", "MyDummyVariable", \

"Yes, Suh!", "TECHED.INI")
End Sub

It’s really that simple! If you run that little program, then look at the file
TECHED.INI in your Windows directory, it’ll look like this:

[WinWord]
MyDummyVariable=Yes, Suh!

Windows takes care of all the details. It knows that the private .INI file should
be stored in the Windows directory. If there’s no file called TECHED.INI in
the Windows directory, one is created for you. If there’s no section called
[WinWord], one is created for you. If there’s no MyDummyVariable, it’s
created for you, too. Finally, MyDummyVariable is assigned the value Yes,
Suh! (yep, Windows is smart enough not to stumble over the comma and the
space).

GetPrivateProfileString
Once a variable’s value has been established — with a WordBasic call like the
one above, or even if you’ve set the INI file entry by hand — retrieving the
value is so easy it’s embarrassing.

Declare Function GetPrivateProfileString Lib "Kernel" \
(Section$, VariableName$, DefaultValue$, \
ReturnedVariableValue$, MaxChars As Integer, \
INIFileName$) As Integer

Sub MAIN
n = GetPrivateProfileString("WinWord", "MyDummyVariable", \

"OOPS!", VariableValue$, 255, "TECHED.INI")
MsgBox VariableValue$, "Returned" + Str$(n) + " Characters"

10 · Windows API/DLLs with WinWord Microsoft Tech·Ed '93

End Sub

For those of us accustomed to the (relative) sanity of Basic, this command has
a very confusing syntax: it’s all bass-ackward. The function itself returns the
number of characters returned by the function, in the indicated variable, if you
knowwhatImean. (Try thinking that ten times, fast!) But once you succumb to
the inscrutable C weirding way, the actual API call is like falling off a log.

True Confessions
No, I don’t keep these strange Windows API calls in my head. I look ’em up.
You probably will, too. The question is: where?

You can go to the source of all WinWisdom, the Programmer’s Reference in
the Windows Software Development Kit. Three problems: the SDK costs
hundreds of bucks; the Programmer’s Reference is around 2,000 pages and
growing almost daily; and, if you manage to find the command you want, it
could take days to wade through the C-speak gobbledygook.

Windows 3.1 Programming for Mere Mortals has a hundred or so API calls,
all worked through and documented for WordBasic. But it’s far from
exhaustive.

If you’re willing to endure some pain, you may find the Visual Basic 2.0
Professional Developer’s Kit of some use. It contains a very complete listing
of Windows API calls, translated for use in Visual Basic. While the Visual
Basic syntax isn’t identical to WordBasic — not by a long shot — it’s
nonetheless far more scrutable than C-speak, and thus a good starting point.

The usual admonitions apply: back up often, back up well. And batter the
living daylights out of the API calls. It’s a lot of fun out there on the bleedin’
edge!

Advanced Topics
I wanted to let you know about four particularly important Windows API
calls. These particular calls solve WordBasic problems I’ve encountered over
and over again. And, for the life of me, I don’t know of any way to solve the
problems without API calls.

Zapping Out an INI Variable
If you maintain private INI files, pace the previous section, you will often
find yourself in the position of wanting to delete variables from the INI file.

It’s easy if you know the trick. (This is from Windows 3.1 Programming for
Mere Mortals, page 468.) The Windows documentation will tell you that you
can delete a variable — delete a line in the INI file — if you feed Windows a
“null pointer” for the variable’s value.

Microsoft Tech·Ed '93 Windows API/DLLs with WinWord · 11

It ends up that the easiest way to do that is to redefine the standard Windows
WritePrivateProfileString, and feed it a long integer zero. Like this:

Declare Function WipeOutVar Lib "Kernel" \
(Section$, VariableName$, Pointer As Long,INIFileName$) \
As Integer Alias "WritePrivateProfileString"

Sub MAIN
n = WipeOutVar("WinWord", "MyDummyVariable", 0, "TECHED.INI")
End Sub

If you run that little program, Windows will delete the line

MyDummyVariable=

from the [WinWord] section of TECHED.INI.

Retrieving all Variable Names
This is a far more complex series of API calls, a solution that appeared just
after the Hacker’s Guide to Word for Windows went to press. Vince Chen
figured out how to do it.

The Windows documentation tells you that retrieving a list of all variable
names within a given section is easy: use GetPrivateProfileString, but send a
“null pointer” for the variable name.

There’s just one teensy-tiny problem. For some reason, WordBasic won’t take
the string that Windows wants to send back. We tried for weeks and weeks to
figure out why WordBasic was so uncooperative; to this day, I don’t know
why it doesn’t work the easy way.

That’s when Vince got to hackin’ at it. He discovered that if you reached into
the bowels of Windows and allocated your own space for the answer, then
asked politely for the variable names, Windows and WordBasic could get
their act together.

Translating that concept into working code is another problem altogether, of
course, but this works....

Declare Function GetPrivateProfileString Lib "Kernel" \
(Section$, Pointer As Long, DefaultValue$, \
ReturnedValueLocation As Long, MaxChars As Integer,\
INIFileName$) As Integer

Declare Function GlobalAlloc Lib "Kernel"(wFlags As Integer, \
dwBytes As Long) As Integer

Declare Function GlobalFree Lib "Kernel"(hMem As Integer) \
As Integer

Declare Function GlobalLock Lib "Kernel"(hMem As Integer) \
As Long

Declare Function GlobalUnLock Lib "Kernel"(hMem As Integer) \
As Integer

Declare Function Stripper Lib "Kernel"(InString$, lp As Long) \
As Long Alias "lstrcpy"

12 · Windows API/DLLs with WinWord Microsoft Tech·Ed '93

Sub MAIN
REM Allocate 4096 moveable bytes, zeroed, and lock it
hlpVarNames = GlobalAlloc(2 + 64, 4096)
REM lpVarNames is a long pointer to the string of Var Names
lpVarNames = GlobalLock(hlpVarNames)

REM Retrieve the zero-delimited string of Variable Names
n = GetPrivateProfileString("WinWord", 0, "", lpVarNames, \

4096, "TECHED.INI")

REM Bump over the Chr$(0) delimiters
n = Stripper(VarName$, lpVarNames)
While Len(VarName$) > 0

MsgBox VarName$, "Variable Name"
lpVarNames = lpVarNames + Len(VarName$) + 1
n = Stripper(VarName$, lpVarNames)

Wend

n = GlobalUnlock(hlpVarNames)
n = GlobalFree(hlpVarName)
End Sub

That little While loop uses the Windows function lstrcpy to translate a pointer
into a string. The funny bump-and-jump machinations are necessary because
Windows stores the variable name string in zero-delimited format. WordBasic
has a hard time grokking zero-delimited strings. (There’s a full discussion in
Mere Mortals, pp 149-151.) Vince’s solution here is a much more elegant one
than the one I stuck in the book.

Echo — One More Time, With Feeling
We’ve been trying to get a reliable Echo Off in WordBasic for as long as
there’s been a WordBasic, it seems. The problem is simple: how to tell
Windows, “Hey, stop updating the screen while I go off and do something!”
In a complex WordBasic program, the lousy screen updates can slow down
your code by a factor of ten.

Once again, Vince found an extraordinarily elegant solution.

Declare Function GetActiveWindow Lib "User" As Integer
Declare Function LockWindowUpdate Lib "User"(hWnd As Integer) \

As Integer

Sub Echo (n)
 Select Case n
 Case 0 ' Echo OFF
 currWindow = GetActiveWindow
 r = LockWindowUpdate(currWindow)
 Case Else ' Echo ON
 r = LockWindowUpdate(0)
 End Select
End Sub

Microsoft Tech·Ed '93 Windows API/DLLs with WinWord · 13

Guy Gallo discovered that if you use the Windows API call GetFocus instead
of GetActiveWindow, screen updates for all of WinWord will be suspended.

If you write complicated WordBasic stuff for lots of people and can figure out
how to make this Echo Off work, this one routine should just about pay for
the whole Tech·Ed conference.

Directory Listing
WordBasic has no easy way to retrieve a list of currently valid subdirectories.
We jimmied together a couple of alternatives and put them in the Hacker’s
Guide, but while we weren’t looking Hackus Maximus Scott Krueger came
up with a Windows end-run.

This is a great bit of Windows API programming from within WordBasic.
First time I saw it, I didn’t believe it could be done from inside WordBasic,
but sure enough....

Declare Function GetFocus Lib "User"() As Integer
Declare Function CreateWindow Lib "User"(lpClassname$, \

lpWindowName$, dwStyle As Long, X As Integer, \
Y As Integer, nWidth As Integer, nHeight As Integer,\
hWndParent As Integer, hMenu As Integer, \
hInstance As Integer, lpParam$) As Integer

Declare Function DestroyWindow Lib "User"(hWnd As Integer) \
As Integer

Declare Function SendMessageString Lib "user"(hWnd As \
Integer, wMsg As Integer, wParam As Integer, lParam$) \
As Integer Alias "SendMessage"

Declare Function SendMessage Lib "user"(hWnd As Integer, \
wMsg As Integer, wParam As Integer, lParam As Long) \
As Integer

Sub MAIN
REM ***Get Subdirectory List - 10/12/92 - by Scott Krueger
DirSpec$ = "*.doc"
FileSpec$ = "*.*"
hWnd = GetFocus
ListBoxhWnd = CreateWindow("ListBox", "GetDirTempListBox",\

1084227715, 10, 10, 100, 100, hWnd, CtrlID, hInstance,\
lpParam$)

REM*** use (-32752) to get subDirectories, 0 to get Files,
REM*** (-16368) for subdir and drives
nFileSpec = - 16368
results = SendMessageString(ListBoxhWnd, 1038, nFileSpec, \

FileSpec$)
count = SendMessage(ListBoxhWnd, 1036, 0, 0)
Dim Dir$(count)
For XX = 0 To count - 1
 Dir$(XX) = String$(255, Chr$(0))
 worked = SendMessageString(listBoxhWnd, 1034, XX, \

Dir$(XX))
Next XX
Killed = DestroyWindow(ListBoxhWnd)

14 · Windows API/DLLs with WinWord Microsoft Tech·Ed '93

Begin Dialog UserDialog 320, 122, "Microsoft Word"
 ComboBox 10, 6, 160, 108, Dir$(), .ComboBox1
 OKButton 205, 7, 100, 21
 CancelButton 205, 31, 99, 21
End Dialog
Dim dlg As UserDialog
KeyClick = Dialog(dlg)
End Sub

Run that program and you’ll get a ComboBox with all available
subdirectories. It looks like this:

Once again, Scott has shown the way with another bit of SuperHack. If you
haven’t seen his Kdlg replacement for WinWord dialogs, check it out: there

are copies available on the CompuServe PROGMSA forum, and on the
companion disk to the Hacker’s Guide.

Staying Connected
As you can see, there’s an enormous amount of work going on with
WordBasic. It’s being extended in ways its originators wouldn’t’ve ever
dreamed.... not in their worst nightmares.

How to find out about all these new goodies? Easy. Get on line!

The best way to get a straight answer to your questions — from just-getting-
started novice to grizzled guru — is in the Microsoft fora on CompuServe. If
you aren’t on-line, you’re missing the greatest resource of WinWord help in
existence.

General WinWord questions are handled on the Word forum: just type GO
MSWORD. Questions specific to WordBasic and how it interacts with the
outside world (including Windows API calls and DDE) run through the
“Programming Microsoft Applications” forum. Type GO PROGMSA.

See you on-line!

Woody Leonhard
Coal Creek Canyon, Colorado

January 15, 1992

Microsoft Tech·Ed '93 Windows API/DLLs with WinWord · 15

	
	
	
	
	Appearances to the contrary, this is not a portrait of the legendary WordBasic hack Scott Krueger.
	
	
	On the other hand, this is a portrait of Lee Hudspeth. Lee’s sidekick Jim Lee (the other half of PRIME Consulting) pioneered the use of private INI files from within WordBasic.
	
	Integrating Windows APIs and DLLs Using WinWord
	Presented by: Woody Leonhard
	Woody is president of Pinecliffe International, purveyors of the critically acclaimed WOPR — Woody’s Office POWER PackÔ — the #1 enhancement to Word for Windows. He’s also a Microsoft Consulting Partner.
	Woody wrote Windows 3.1 Programming for Mere Mortals, the seminal guide to Windows programming in Visual Basic, WordBasic, and other “macro” languages. Mere Mortals shows you how to beat Windows into submission without expensive, complex tools: if you can write a macro, you can program Windows.
	Woody and Vincent Chen teamed up for the ultimate, no-bull reference to things WinWord, the Hacker’s Guide to Word for Windows. If you prefer your reference books without the sugar coating, check the Hacker’s Guide.
	Pinecliffe International
	Coal Creek Canyon, Golden, Colorado USA 80403-0100
	WOPR order line: 800-OK-WINWORD (800-659-4696)
	Outside USA: 314-965-5630
	Windows 3.1 Programming for Mere Mortals, Addison-Wesley, 1992, ISBN 0-201-60832-4. “Irreverent ... a painless introduction to such arcane issues as API calls and DDE.” — PC Magazine, 10/27/92.
	Hacker’s Guide to Word for Windows, Addison-Wesley, 1993, ISBN 0-201-63273-X. “It’s a wonder anybody at Microsoft still talks to me.” — Woody Leonhard, 1/15/93.

	Why?
	Dynamic Link Libraries
	API

	Stop! Watch!
	The Wrong Way

	Sub MAIN
	StartTime$ = Time$()
	For i = 1 to 1000
	Dummy = Dummy + 1
	Next i
	EndTime$ = Time$()
	MsgBox "Start:" + StartTime$ + " End:" + EndTime$
	End Sub
	A Windows Way

	Declare Function GetCurrentTime Lib "User" As Long
	Sub MAIN
	StartTime = GetCurrentTime
	For i = 1 to 1000
	Dummy = Dummy + 1
	Next i
	EndTime = GetCurrentTime
	MsgBox "Elapsed Milliseconds:" + Str$(EndTime - StartTime)
	End Sub
	Say, Wuh?
	Dissection

	Declare Function
	Declare Function GetCurrentTime
	Declare Function GetCurrentTime Lib "User"
	Declare Function GetCurrentTime Lib "User" As Long
	Redux

	Private INI Files
	Rationale
	The INI Thingie

	[Enh386]
	WinTimeSlice=100,50
	display=orchidf.386
	[Section Name]
	VariableName=Value
	WritePrivateProfileString

	Declare Function WritePrivateProfileString Lib "Kernel"
	(Section$, VariableName$, VariableValue$, INIFileName$)
	As Integer
	Sub MAIN
	n = WritePrivateProfileString("WinWord", "MyDummyVariable",
	"Yes, Suh!", "TECHED.INI")
	End Sub
	[WinWord]
	MyDummyVariable=Yes, Suh!
	GetPrivateProfileString

	Declare Function GetPrivateProfileString Lib "Kernel"
	(Section$, VariableName$, DefaultValue$,
	ReturnedVariableValue$, MaxChars As Integer,
	INIFileName$) As Integer
	Sub MAIN
	n = GetPrivateProfileString("WinWord", "MyDummyVariable",
	"OOPS!", VariableValue$, 255, "TECHED.INI")
	MsgBox VariableValue$, "Returned" + Str$(n) + " Characters"
	End Sub
	True Confessions

	Advanced Topics
	Zapping Out an INI Variable

	Declare Function WipeOutVar Lib "Kernel"
	(Section$, VariableName$, Pointer As Long,INIFileName$)
	As Integer Alias "WritePrivateProfileString"
	Sub MAIN
	n = WipeOutVar("WinWord", "MyDummyVariable", 0, "TECHED.INI")
	End Sub
	MyDummyVariable=
	Retrieving all Variable Names

	Declare Function GetPrivateProfileString Lib "Kernel"
	(Section$, Pointer As Long, DefaultValue$,
	ReturnedValueLocation As Long, MaxChars As Integer,
	INIFileName$) As Integer
	Declare Function GlobalAlloc Lib "Kernel"(wFlags As Integer,
	dwBytes As Long) As Integer
	Declare Function GlobalFree Lib "Kernel"(hMem As Integer)
	As Integer
	Declare Function GlobalLock Lib "Kernel"(hMem As Integer)
	As Long
	Declare Function GlobalUnLock Lib "Kernel"(hMem As Integer)
	As Integer
	Declare Function Stripper Lib "Kernel"(InString$, lp As Long)
	As Long Alias "lstrcpy"
	Sub MAIN
	REM Allocate 4096 moveable bytes, zeroed, and lock it
	hlpVarNames = GlobalAlloc(2 + 64, 4096)
	REM lpVarNames is a long pointer to the string of Var Names
	lpVarNames = GlobalLock(hlpVarNames)
	REM Retrieve the zero-delimited string of Variable Names
	n = GetPrivateProfileString("WinWord", 0, "", lpVarNames,
	4096, "TECHED.INI")
	REM Bump over the Chr$(0) delimiters
	n = Stripper(VarName$, lpVarNames)
	While Len(VarName$) > 0
	MsgBox VarName$, "Variable Name"
	lpVarNames = lpVarNames + Len(VarName$) + 1
	n = Stripper(VarName$, lpVarNames)
	Wend
	n = GlobalUnlock(hlpVarNames)
	n = GlobalFree(hlpVarName)
	End Sub
	Echo — One More Time, With Feeling

	Declare Function GetActiveWindow Lib "User" As Integer
	Declare Function LockWindowUpdate Lib "User"(hWnd As Integer)
	As Integer
	
	Sub Echo (n)
	Select Case n
	Case 0 ' Echo OFF
	currWindow = GetActiveWindow
	r = LockWindowUpdate(currWindow)
	Case Else ' Echo ON
	r = LockWindowUpdate(0)
	End Select
	End Sub
	Directory Listing

	Declare Function GetFocus Lib "User"() As Integer
	Declare Function CreateWindow Lib "User"(lpClassname$,
	lpWindowName$, dwStyle As Long, X As Integer,
	Y As Integer, nWidth As Integer, nHeight As Integer,
	hWndParent As Integer, hMenu As Integer,
	hInstance As Integer, lpParam$) As Integer
	Declare Function DestroyWindow Lib "User"(hWnd As Integer)
	As Integer
	Declare Function SendMessageString Lib "user"(hWnd As
	Integer, wMsg As Integer, wParam As Integer, lParam$)
	As Integer Alias "SendMessage"
	Declare Function SendMessage Lib "user"(hWnd As Integer,
	wMsg As Integer, wParam As Integer, lParam As Long)
	As Integer
	Sub MAIN
	REM ***Get Subdirectory List - 10/12/92 - by Scott Krueger
	DirSpec$ = "*.doc"
	FileSpec$ = "*.*"
	hWnd = GetFocus
	ListBoxhWnd = CreateWindow("ListBox", "GetDirTempListBox",
	1084227715, 10, 10, 100, 100, hWnd, CtrlID, hInstance,
	lpParam$)
	REM*** use (-32752) to get subDirectories, 0 to get Files,
	REM*** (-16368) for subdir and drives
	nFileSpec = - 16368
	results = SendMessageString(ListBoxhWnd, 1038, nFileSpec,
	FileSpec$)
	count = SendMessage(ListBoxhWnd, 1036, 0, 0)
	Dim Dir$(count)
	For XX = 0 To count - 1
	Dir$(XX) = String$(255, Chr$(0))
	worked = SendMessageString(listBoxhWnd, 1034, XX,
	Dir$(XX))
	Next XX
	Killed = DestroyWindow(ListBoxhWnd)
	Begin Dialog UserDialog 320, 122, "Microsoft Word"
	ComboBox 10, 6, 160, 108, Dir$(), .ComboBox1
	OKButton 205, 7, 100, 21
	CancelButton 205, 31, 99, 21
	End Dialog
	Dim dlg As UserDialog
	KeyClick = Dialog(dlg)
	End Sub
	Staying Connected

